Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales

Identifieur interne : 000C55 ( Istex/Corpus ); précédent : 000C54; suivant : 000C56

Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales

Auteurs : Joshua J. Roering ; James W. Kirchner ; William E. Dietrich

Source :

RBID : ISTEX:C303C5AF53434DC6F44BB02D882B889B14DE370A

Abstract

Soil‐mantled hillslopes are typically convex near the crest and become increasingly planar downslope, consistent with nonlinear, slope‐dependent sediment transport models. In contrast to the widely used linear transport model (in which sediment flux is proportional to slope angle), nonlinear models imply that sediment flux should increase rapidly as hillslope gradient approaches a critical value. Here we explore how nonlinear transport influences hillslope evolution and introduce a dimensionless parameter ΨL to express the relative importance of nonlinear transport. For steady state hillslopes, with increasing ΨL (i.e., as slope angles approach the threshold angle and the relative magnitude of nonlinear transport increases), the zone of hillslope convexity becomes focused at the hilltop and side slopes become increasingly planar. On steep slopes, rapid increases in sediment flux near the critical gradient limit further steepening, such that hillslope relief and slope angle are not sensitive indicators of erosion rate. Using a one‐dimensional finite difference model, we quantify hillslope response to changes in baselevel lowering and/or climate‐related transport efficiency and use an exponential decay function to describe how rapidly sediment flux and erosion rate approach equilibrium. The exponential timescale for hillslope adjustment decreases rapidly with increasing ΨL. Our results demonstrate that the adjustment timescale for hillslopes characteristic of the Oregon Coast Range and similar steep, soil‐mantled landscapes is relatively rapid (≤50 kyr), less than one quarter of the timescale predicted by the linear transport model.

Url:
DOI: 10.1029/2001JB000323

Links to Exploration step

ISTEX:C303C5AF53434DC6F44BB02D882B889B14DE370A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
<author wicri:is="90%">
<name sortKey="Roering, Joshua J" sort="Roering, Joshua J" uniqKey="Roering J" first="Joshua J." last="Roering">Joshua J. Roering</name>
</author>
<author wicri:is="90%">
<name sortKey="Kirchner, James W" sort="Kirchner, James W" uniqKey="Kirchner J" first="James W." last="Kirchner">James W. Kirchner</name>
</author>
<author wicri:is="90%">
<name sortKey="Dietrich, William E" sort="Dietrich, William E" uniqKey="Dietrich W" first="William E." last="Dietrich">William E. Dietrich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C303C5AF53434DC6F44BB02D882B889B14DE370A</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1029/2001JB000323</idno>
<idno type="url">https://api.istex.fr/document/C303C5AF53434DC6F44BB02D882B889B14DE370A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000C55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
<author wicri:is="90%">
<name sortKey="Roering, Joshua J" sort="Roering, Joshua J" uniqKey="Roering J" first="Joshua J." last="Roering">Joshua J. Roering</name>
</author>
<author wicri:is="90%">
<name sortKey="Kirchner, James W" sort="Kirchner, James W" uniqKey="Kirchner J" first="James W." last="Kirchner">James W. Kirchner</name>
</author>
<author wicri:is="90%">
<name sortKey="Dietrich, William E" sort="Dietrich, William E" uniqKey="Dietrich W" first="William E." last="Dietrich">William E. Dietrich</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2001-08-10">2001-08-10</date>
<biblScope unit="volume">106</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page" from="16499">16499</biblScope>
<biblScope unit="page" to="16513">16513</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">C303C5AF53434DC6F44BB02D882B889B14DE370A</idno>
<idno type="DOI">10.1029/2001JB000323</idno>
<idno type="ArticleID">2001JB000323</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Soil‐mantled hillslopes are typically convex near the crest and become increasingly planar downslope, consistent with nonlinear, slope‐dependent sediment transport models. In contrast to the widely used linear transport model (in which sediment flux is proportional to slope angle), nonlinear models imply that sediment flux should increase rapidly as hillslope gradient approaches a critical value. Here we explore how nonlinear transport influences hillslope evolution and introduce a dimensionless parameter ΨL to express the relative importance of nonlinear transport. For steady state hillslopes, with increasing ΨL (i.e., as slope angles approach the threshold angle and the relative magnitude of nonlinear transport increases), the zone of hillslope convexity becomes focused at the hilltop and side slopes become increasingly planar. On steep slopes, rapid increases in sediment flux near the critical gradient limit further steepening, such that hillslope relief and slope angle are not sensitive indicators of erosion rate. Using a one‐dimensional finite difference model, we quantify hillslope response to changes in baselevel lowering and/or climate‐related transport efficiency and use an exponential decay function to describe how rapidly sediment flux and erosion rate approach equilibrium. The exponential timescale for hillslope adjustment decreases rapidly with increasing ΨL. Our results demonstrate that the adjustment timescale for hillslopes characteristic of the Oregon Coast Range and similar steep, soil‐mantled landscapes is relatively rapid (≤50 kyr), less than one quarter of the timescale predicted by the linear transport model.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Joshua J. Roering</name>
</json:item>
<json:item>
<name>James W. Kirchner</name>
</json:item>
<json:item>
<name>William E. Dietrich</name>
</json:item>
</author>
<articleId>
<json:string>2001JB000323</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Soil‐mantled hillslopes are typically convex near the crest and become increasingly planar downslope, consistent with nonlinear, slope‐dependent sediment transport models. In contrast to the widely used linear transport model (in which sediment flux is proportional to slope angle), nonlinear models imply that sediment flux should increase rapidly as hillslope gradient approaches a critical value. Here we explore how nonlinear transport influences hillslope evolution and introduce a dimensionless parameter ΨL to express the relative importance of nonlinear transport. For steady state hillslopes, with increasing ΨL (i.e., as slope angles approach the threshold angle and the relative magnitude of nonlinear transport increases), the zone of hillslope convexity becomes focused at the hilltop and side slopes become increasingly planar. On steep slopes, rapid increases in sediment flux near the critical gradient limit further steepening, such that hillslope relief and slope angle are not sensitive indicators of erosion rate. Using a one‐dimensional finite difference model, we quantify hillslope response to changes in baselevel lowering and/or climate‐related transport efficiency and use an exponential decay function to describe how rapidly sediment flux and erosion rate approach equilibrium. The exponential timescale for hillslope adjustment decreases rapidly with increasing ΨL. Our results demonstrate that the adjustment timescale for hillslopes characteristic of the Oregon Coast Range and similar steep, soil‐mantled landscapes is relatively rapid (≤50 kyr), less than one quarter of the timescale predicted by the linear transport model.</abstract>
<qualityIndicators>
<score>7.76</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 815 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1658</abstractCharCount>
<pdfWordCount>6041</pdfWordCount>
<pdfCharCount>63395</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>230</abstractWordCount>
</qualityIndicators>
<title>Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>106</volume>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<pages>
<total>15</total>
<last>16513</last>
<first>16499</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>B8</issue>
<subject>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Geomorphology and weathering</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Erosion</value>
</json:item>
<json:item>
<value>Sedimentation</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Sedimentation</value>
</json:item>
<json:item>
<value>Papers on Geodesy and Gravity Tectonophysics</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Solid Earth</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
</host>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1029/2001JB000323</json:string>
</doi>
<id>C303C5AF53434DC6F44BB02D882B889B14DE370A</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/C303C5AF53434DC6F44BB02D882B889B14DE370A/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/C303C5AF53434DC6F44BB02D882B889B14DE370A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C303C5AF53434DC6F44BB02D882B889B14DE370A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2001</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
<author>
<persName>
<forename type="first">Joshua J.</forename>
<surname>Roering</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">James W.</forename>
<surname>Kirchner</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">William E.</forename>
<surname>Dietrich</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2001-08-10"></date>
<biblScope unit="volume">106</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page" from="16499">16499</biblScope>
<biblScope unit="page" to="16513">16513</biblScope>
</imprint>
</monogr>
<idno type="istex">C303C5AF53434DC6F44BB02D882B889B14DE370A</idno>
<idno type="DOI">10.1029/2001JB000323</idno>
<idno type="ArticleID">2001JB000323</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Soil‐mantled hillslopes are typically convex near the crest and become increasingly planar downslope, consistent with nonlinear, slope‐dependent sediment transport models. In contrast to the widely used linear transport model (in which sediment flux is proportional to slope angle), nonlinear models imply that sediment flux should increase rapidly as hillslope gradient approaches a critical value. Here we explore how nonlinear transport influences hillslope evolution and introduce a dimensionless parameter ΨL to express the relative importance of nonlinear transport. For steady state hillslopes, with increasing ΨL (i.e., as slope angles approach the threshold angle and the relative magnitude of nonlinear transport increases), the zone of hillslope convexity becomes focused at the hilltop and side slopes become increasingly planar. On steep slopes, rapid increases in sediment flux near the critical gradient limit further steepening, such that hillslope relief and slope angle are not sensitive indicators of erosion rate. Using a one‐dimensional finite difference model, we quantify hillslope response to changes in baselevel lowering and/or climate‐related transport efficiency and use an exponential decay function to describe how rapidly sediment flux and erosion rate approach equilibrium. The exponential timescale for hillslope adjustment decreases rapidly with increasing ΨL. Our results demonstrate that the adjustment timescale for hillslopes characteristic of the Oregon Coast Range and similar steep, soil‐mantled landscapes is relatively rapid (≤50 kyr), less than one quarter of the timescale predicted by the linear transport model.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Geomorphology and weathering</term>
</item>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Erosion</term>
</item>
<item>
<term>Sedimentation</term>
</item>
<item>
<term>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</term>
</item>
<item>
<term>Sedimentation</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Papers on Geodesy and Gravity Tectonophysics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-06-05">Received</change>
<change when="2001-03-28">Registration</change>
<change when="2001-08-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/C303C5AF53434DC6F44BB02D882B889B14DE370A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb12759">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi>10.1002/jgrb.v106.B8</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="106">106</numbering>
<numbering type="journalIssue">B8</numbering>
</numberingGroup>
<coverDate startDate="2001-08-10">10 August 2001</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="290" status="forIssue">
<doi>10.1029/2001JB000323</doi>
<idGroup>
<id type="editorialOffice" value="2001JB000323"></id>
<id type="unit" value="JGRB12759"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Papers on Geodesy and Gravity Tectonophysics</title>
<title type="tocHeading1">Papers on Geodesy and Gravity Tectonophysics</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2001 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2000-06-05"></event>
<event type="manuscriptAccepted" date="2001-03-28"></event>
<event type="publishedPrint" date="2001-08-10"></event>
<event type="firstOnline" date="2012-09-20"></event>
<event type="publishedOnlineFinalForm" date="2012-09-20"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-01-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">16499</numbering>
<numbering type="pageLast">16513</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1625">Geomorphology and weathering</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1815">Erosion</subject>
<subject href="http://psi.agu.org/taxonomy5/1861">Sedimentation</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4863">Sedimentation</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb12759-cit-0000" type="self">
<author>
<familyName>Roering</familyName>
,
<givenNames>J. J.</givenNames>
</author>
,
<author>
<givenNames>J. W.</givenNames>
<familyName>Kirchner</familyName>
</author>
, and
<author>
<givenNames>W. E.</givenNames>
<familyName>Dietrich</familyName>
</author>
(
<pubYear year="2001">2001</pubYear>
),
<articleTitle>Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>106</vol>
(
<issue>B8</issue>
),
<pageFirst>16499</pageFirst>
<pageLast>16513</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/2001JB000323">10.1029/2001JB000323</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB12759.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
<title type="shortAuthors">Roering ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="jgrb12759-cr-0001">
<personName>
<givenNames>Joshua J.</givenNames>
<familyName>Roering</familyName>
</personName>
</creator>
<creator xml:id="jgrb12759-cr-0002">
<personName>
<givenNames>James W.</givenNames>
<familyName>Kirchner</familyName>
</personName>
</creator>
<creator xml:id="jgrb12759-cr-0003">
<personName>
<givenNames>William E.</givenNames>
<familyName>Dietrich</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb12759-para-0001">Soil‐mantled hillslopes are typically convex near the crest and become increasingly planar downslope, consistent with nonlinear, slope‐dependent sediment transport models. In contrast to the widely used linear transport model (in which sediment flux is proportional to slope angle), nonlinear models imply that sediment flux should increase rapidly as hillslope gradient approaches a critical value. Here we explore how nonlinear transport influences hillslope evolution and introduce a dimensionless parameter Ψ
<sub>
<i>L</i>
</sub>
to express the relative importance of nonlinear transport. For steady state hillslopes, with increasing Ψ
<sub>
<i>L</i>
</sub>
(i.e., as slope angles approach the threshold angle and the relative magnitude of nonlinear transport increases), the zone of hillslope convexity becomes focused at the hilltop and side slopes become increasingly planar. On steep slopes, rapid increases in sediment flux near the critical gradient limit further steepening, such that hillslope relief and slope angle are not sensitive indicators of erosion rate. Using a one‐dimensional finite difference model, we quantify hillslope response to changes in baselevel lowering and/or climate‐related transport efficiency and use an exponential decay function to describe how rapidly sediment flux and erosion rate approach equilibrium. The exponential timescale for hillslope adjustment decreases rapidly with increasing Ψ
<sub>
<i>L</i>
</sub>
. Our results demonstrate that the adjustment timescale for hillslopes characteristic of the Oregon Coast Range and similar steep, soil‐mantled landscapes is relatively rapid (≤50 kyr), less than one quarter of the timescale predicted by the linear transport model.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshua J.</namePart>
<namePart type="family">Roering</namePart>
</name>
<name type="personal">
<namePart type="given">James W.</namePart>
<namePart type="family">Kirchner</namePart>
</name>
<name type="personal">
<namePart type="given">William E.</namePart>
<namePart type="family">Dietrich</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2001-08-10</dateIssued>
<dateCaptured encoding="w3cdtf">2000-06-05</dateCaptured>
<dateValid encoding="w3cdtf">2001-03-28</dateValid>
<edition>Roering, J. J., J. W. Kirchner, and W. E. Dietrich (2001), Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales, J. Geophys. Res., 106(B8), 16499–16513, doi:10.1029/2001JB000323.</edition>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Soil‐mantled hillslopes are typically convex near the crest and become increasingly planar downslope, consistent with nonlinear, slope‐dependent sediment transport models. In contrast to the widely used linear transport model (in which sediment flux is proportional to slope angle), nonlinear models imply that sediment flux should increase rapidly as hillslope gradient approaches a critical value. Here we explore how nonlinear transport influences hillslope evolution and introduce a dimensionless parameter ΨL to express the relative importance of nonlinear transport. For steady state hillslopes, with increasing ΨL (i.e., as slope angles approach the threshold angle and the relative magnitude of nonlinear transport increases), the zone of hillslope convexity becomes focused at the hilltop and side slopes become increasingly planar. On steep slopes, rapid increases in sediment flux near the critical gradient limit further steepening, such that hillslope relief and slope angle are not sensitive indicators of erosion rate. Using a one‐dimensional finite difference model, we quantify hillslope response to changes in baselevel lowering and/or climate‐related transport efficiency and use an exponential decay function to describe how rapidly sediment flux and erosion rate approach equilibrium. The exponential timescale for hillslope adjustment decreases rapidly with increasing ΨL. Our results demonstrate that the adjustment timescale for hillslopes characteristic of the Oregon Coast Range and similar steep, soil‐mantled landscapes is relatively rapid (≤50 kyr), less than one quarter of the timescale predicted by the linear transport model.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1625">Geomorphology and weathering</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1815">Erosion</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1861">Sedimentation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4863">Sedimentation</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Papers on Geodesy and Gravity Tectonophysics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>106</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B8</number>
</detail>
<extent unit="pages">
<start>16499</start>
<end>16513</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C303C5AF53434DC6F44BB02D882B889B14DE370A</identifier>
<identifier type="DOI">10.1029/2001JB000323</identifier>
<identifier type="ArticleID">2001JB000323</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2001 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000C55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C303C5AF53434DC6F44BB02D882B889B14DE370A
   |texte=   Hillslope evolution by nonlinear, slope‐dependent transport: Steady state morphology and equilibrium adjustment timescales
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024